Gujarati
Hindi
4-1.Newton's Laws of Motion
hard

A force $F = Be^{-Ct}$ acts on a particle whose mass is $m$ and whose velocity is $0$ at $t = 0$. It’s terminal velocity is :

A

$\frac{C}{{mB}}$

B

$\frac{B}{{mC}}$

C

$\frac{{BC}}{m}$

D

$-\frac{B}{{mC}}$

Solution

$F=m a \Rightarrow \quad m a=B e^{-c t}$

$a=\frac{B e^{-c t}}{m}$

$\frac{d v}{d t}=\frac{B e^{-c t}}{m}$

$\int d v=\int \frac{Be^{-c t}}{m} \cdot d t$

$\Rightarrow v(t)=-\frac{B e^{-c t}}{m c}+k$

$v(t)=\frac{B}{m c}\left(1-v^{-c t}\right)$

$k=\frac{B}{m c}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.