If velocity of light $c$, Planck’s constant $h$ and gravitational constant $G$ are taken as fundamental quantities, then express mass, length and time in terms of dimensions of these quantities.
The frequency of vibration $f$ of a mass $m$ suspended from a spring of spring constant $K$ is given by a relation of this type $f = C\,{m^x}{K^y}$; where $C$ is a dimensionless quantity. The value of $x$ and $y$ are
Let us consider an equation
$\frac{1}{2} m v^{2}=m g h$
where $m$ is the mass of the body. velocity, $g$ is the acceleration do gravity and $h$ is the height. whether this equation is dimensionally correct.
A gas bubble from an explosion under water oscillates with a period proportional of $P^a\,d^b\,E^c$ where $P$ is the static pressure, $d$ is the density of water and $E$ is the energy of explosion. Then $a,\,b$ and $c$ are