The equation of state of some gases can be expressed as $\left( {P + \frac{a}{{{V^2}}}} \right) = \frac{{b\theta }}{l}$ Where $P$ is the pressure, $V$ the volume, $\theta $ the absolute temperature and $a$ and $b$ are constants. The dimensional formula of $a$ is
$[M{L^5}{T^{ - 2}}]$
$[{M^{ - 1}}{L^5}{T^{ 2}}]$
$[M{L^{ - 5}}{T^{ - 1}}]$
$[M{L^{ 5}}{T^{ 1}}]$
Choose the correct match
List I |
List II |
---|---|
$(i)$ Curie |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ Light year |
$(B)$ $M$ |
$(iii)$ Dielectric strength |
$(C)$ Dimensionless |
$(iv)$ Atomic weight |
$(D)$ $T$ |
$(v)$ Decibel |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |
Let $[{\varepsilon _0}]$ denotes the dimensional formula of the permittivity of the vacuum and $[{\mu _0}]$ that of the permeability of the vacuum. If $M = {\rm{mass}}$, $L = {\rm{length}}$, $T = {\rm{Time}}$ and $I = {\rm{electric current}}$, then
If force $(F)$, length $(L) $ and time $(T)$ are assumed to be fundamental units, then the dimensional formula of the mass will be
$\left(P+\frac{a}{V^2}\right)(V-b)=R T$ represents the equation of state of some gases. Where $P$ is the pressure, $V$ is the volume, $T$ is the temperature and $a, b, R$ are the constants. The physical quantity, which has dimensional formula as that of $\frac{b^2}{a}$, will be