The frequency of vibration $f$ of a mass $m$ suspended from a spring of spring constant $K$ is given by a relation of this type $f = C\,{m^x}{K^y}$; where $C$ is a dimensionless quantity. The value of $x$ and $y$ are
$x = \frac{1}{2},\,y = \frac{1}{2}$
$x = - \frac{1}{2},\,y = - \frac{1}{2}$
$x = \frac{1}{2},\,y = - \frac{1}{2}$
$x = - \frac{1}{2},\,y = \frac{1}{2}$
Planck's constant $h$, speed of light $c$ and gravitational constant $G$ are used to form a unit of length $L$ and a unit of mass $M$. Then the correct option$(s)$ is(are)
$(A)$ $M \propto \sqrt{ c }$ $(B)$ $M \propto \sqrt{ G }$ $(C)$ $L \propto \sqrt{ h }$ $(D)$ $L \propto \sqrt{G}$
Out of the following pair, which one does not have identical dimensions
Dimensions of coefficient of viscosity are
The physical quantity that has the same dimensional formula as pressure is :
The dimensions of resistivity in terms of $M,\,L,\,T$ and $Q$ where $Q$ stands for the dimensions of charge, is