વિધેય $f(\theta )\, = \,1\, - \theta + \frac{{{\theta ^2}}}{{2!}} - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^4}}}{{4!}} + ...$ વ્યાખ્યાયિત થાય છે તો $f(\theta )$ એ પરિમાણરહિત રાશિ હોવાથી જરૂરિયાત શું છે ?
કારણ કે $f(\theta)$ એ $\theta$ ની જુદી જુદી ધાતોનો સરવાળો છે તેથી $\theta$ એે પરિમાણરિત રાશિ છે. એકરૂપતાના સિદ્ધાંત પરથી સમીકરણની જમણીબાજુ પરિમાણરહિત છે તેથી ડાબી બાજુ પણ પરિમાણરહિત હોય.
તરંગ સમીકરણ ${\rm{Y = A \,sin}}\,\omega {\rm{ }}\left( {\frac{x}{v}\,\, - \,\,k} \right)$ દ્વારા આપી શકાય જ્યાં $\omega$ એ કોણીય વેગ અને $v$ એ રેખીય વેગ છે $k$ નું પરિમાણ શું હશે ?
એકમોની નવી પદ્ધતિમાં ઊર્જા $(E)$, ઘનતા $(d)$ અને પાવર $(P)$ ને મૂળભૂત એકમો તરીક લેવામાં આવે છે, તો પછી સાર્વત્રિક ગુરુત્વાકર્ષણ અચળાંક $G$ નું પારિમાણિક સૂત્ર શું હશે?
$\frac{{dy}}{{dt}}\,\, = \,2\,\omega \sin \,(\omega t\, + \,\,{\theta _0})\,$ સમીકરણમાં ${\text{( }}\omega {\text{t + }}{\theta _{\text{0}}}{\text{ )}}$ ના પરિમાણ.......છે
નળીમાંથી એકમ આડછેદના ક્ષેત્રફળ અને એકમ સમયમાં પસાર થતાં પ્રવાહીનું દળ $P^x$ અને $v^y$ ના સમપ્રમાણમાં છે જ્યાં $P$ એ દબાણનો તફાવત અને $v$ વેગ છે, તો $x$ અને $y$ વચ્ચેનો સંબધ શું થાય?
એક નિશ્ચિત મૂળ $u=\frac{A \sqrt{x}}{x+B}$ થી $x$ અંતર સાથે કણોની સંભવિત ઊર્જા બદલાય છે, જ્યાં $A$ અને $B$ અચળાંકો છે. $A$ અને $B$ ના પરિમાણો અનુક્રમે કયા છે?