A function $f(x)$ is given by $f(x)=\frac{5^{x}}{5^{x}+5}$, then the sum of the series
$f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+f\left(\frac{3}{20}\right)+\ldots \ldots+f\left(\frac{39}{20}\right)$ is equal to ....... .
$\frac{19}{2}$
$\frac{49}{2}$
$\frac{29}{2}$
$\frac{39}{2}$
The sentence, What is your Name ? is
Let $R _{1}$ and $R _{2}$ be two relations defined as follows :
$R _{1}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \in Q \right\}$ and $R _{2}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \notin Q \right\}$
where $Q$ is the set of all rational numbers. Then
If $f(x)=\frac{2^{2 x}}{2^{2 x}+2}, x \in R$ then $f\left(\frac{1}{2023}\right)+f\left(\frac{2}{2023}\right)+\ldots \ldots . .+f\left(\frac{2022}{2023}\right)$ is equal to
Let $f(x) = {(x + 1)^2} - 1,\;\;(x \ge - 1)$. Then the set $S = \{ x:f(x) = {f^{ - 1}}(x)\} $ is
Let $f: R \rightarrow R$ be a continuous function such that $f\left(x^2\right)=f\left(x^3\right)$ for all $x \in R$. Consider the following statements.
$I.$ $f$ is an odd function.
$II.$ $f$ is an even function.
$III$. $f$ is differentiable everywhere. Then,