एक फलन $f ( x ), f ( x )=\frac{5^{ x }}{5^{ x }+5}$, द्वारा दिया गया है, तो श्रेणी $f \left(\frac{1}{20}\right)+ f \left(\frac{2}{20}\right)+ f \left(\frac{3}{20}\right)+\ldots \ldots+ f \left(\frac{39}{20}\right)$ का योगफल बराबर है
$\frac{19}{2}$
$\frac{49}{2}$
$\frac{29}{2}$
$\frac{39}{2}$
माना $f: R \rightarrow R$ एक संतत फलन है जिसके लिए $f(3 x)-f(x)=x$ है। यदि $f(8)=7$ है, तो $f(14)$ बराबर है :
मान लें $f(x)$ एक चर बहुपद इस प्रकार है कि $f\left(\frac{1}{2}\right)=100$ तथा $f(x) \leq 100$ प्रत्येक वास्तविक $x$ के लिए है। निम्नलिखित में से कौन सा कथन आवश्यक रूप से सत्य नहीं है?
फलन $f(x) = \frac{{{x^2}}}{{{x^2} + 1}}$ का परिसर है
फलन $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ जहाँ $[.]$ महत्तम पूर्णांक फलन है, परिभाषित है
सिद्ध कीजिए कि $f(x)=x^{2}$ द्वारा परिभाषित फलन $f: R \rightarrow R$ न तो एकैकी है और न आच्छादक है।