If $f(x) = \frac{x}{{x - 1}}$, then $\frac{{f(a)}}{{f(a + 1)}} = $

  • A

    $f( - a)$

  • B

    $f\left( {\frac{1}{a}} \right)$

  • C

    $f({a^2})$

  • D

    $f\left( {\frac{{ - a}}{{a - 1}}} \right)$

Similar Questions

The largest interval lying in $\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$ for which the function, $f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right)$  is defined is

  • [AIEEE 2007]

The graph of the function $f(x)=x+\frac{1}{8} \sin (2 \pi x), 0 \leq x \leq 1$ is shown below. Define $f_1(x)=f(x), f_{n+1}(x)=f\left(f_n(x)\right)$, for $n \geq 1$.

Which of the following statements are true?

$I.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=0$

$II.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=\frac{1}{2}$

$III.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=1$

$IV.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)$ does not exist.

  • [KVPY 2016]

Let $f(x)$ be a non-constant polynomial with real coefficients such that $f\left(\frac{1}{2}\right)=100$ and $f(x) \leq 100$ for all real $x$. Which of the following statements is NOT necessarily true?

  • [KVPY 2013]

The range of values of the function $f\left( x \right) = \frac{1}{{2 - 3\sin x}}$ is

If $P(S)$ denotes the set of all subsets of a given set $S, $ then the number of one-to-one functions from the set $S = \{ 1, 2, 3\}$ to the set $P(S)$ is

  • [AIEEE 2012]