Let $E = \{ 1,2,3,4\} $ and $F = \{ 1,2\} $.Then the number of onto functions from $E$ to $F$ is
$14$
$16$
$12$
$8$
Let $f ( x )$ be a quadratic polynomial with leading coefficient $1$ such that $f(0)=p, p \neq 0$ and $f(1)=\frac{1}{3}$. If the equation $f(x)=0$ and $fofofof (x)=0$ have a common real root, then $f(-3)$ is equal to $........$
If $h\left( x \right) = \left[ {\ln \frac{x}{e}} \right] + \left[ {\ln \frac{e}{x}} \right]$ ,where [.] denotes greatest integer function, then which of the following is false ?
Let $X$ be a non-empty set and let $P(X)$ denote the collection of all subsets of $X$. Define $f: X \times P(X) \rightarrow R$ by $f(x, A)=\left\{\begin{array}{ll}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A^*\end{array}\right.$ Then, $f(x, A \cup B)$ equals
Consider the identity function $I _{ N }: N \rightarrow N$ defined as $I _{ N }$ $(x)=x$ $\forall $ $x \in N$ Show that although $I _{ N }$ is onto but $I _{ N }+ I _{ N }:$ $ N \rightarrow N$ defined as $\left(I_{N}+I_{N}\right)(x)=$ $I_{N}(x)+I_{N}(x)$ $=x+x=2 x$ is not onto.
Let $S=\{1,2,3,4,5,6\}$. Then the number of oneone functions $f: S \rightarrow P(S)$, where $P(S)$ denote the power set of $S$, such that $f(n) \subset f(m)$ where $n < m$ is $..................$