संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
An element $e$ $\in Q$ will be the identity element for the operation $^*$
if $a^{*} e=a=e^{*}$ $a$, for all $a \in Q$
However, there is no such element $e \in Q$ with respect to each of the six operations satisfying the above condition.
Thus, none of the six operations has identity.
यदि ${e^x} = y + \sqrt {1 + {y^2}} $, तब $y =$
यदि $f:R \to R$; $f(x + y) = f(x) + f(y)$, को संतुष्ट करता है; सभी $x,\;y \in R$ के लिए तथा $f(1) = 7$, तब $\sum\limits_{r = 1}^n {f(r)} $ का मान है
$b$ व $c$ के वे मान जो कि सर्वसमिका $f(x + 1) - f(x) = 8x + 3$ को संतुष्ट करते है , जहा $f(x) = b{x^2} + cx + d$, है
सिद्ध कीजिए कि $f: R \rightarrow\{x \in R :-1 < x < 1\}$ जहाँ $f(x)=\frac{x}{1+|x|}, x \in R$ द्वारा
परिभाषित फलन एकैकी तथा आच्छादक है ।
फलन
$\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{[\mathrm{x}]^2-3[\mathrm{x}]-10}}$, (जहाँ $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है, का प्रांत है)