फलन $f(x) = \left\{ \begin{array}{l}{\tan ^{ - 1}}x\;\;\;\;\;,\;|x|\; \le 1\\\frac{1}{2}(|x|\; - 1)\;,\;|x|\; > 1\end{array} \right.$ के अवकलज का डोमेन (प्रान्त) है
$R - \{ 0\} $
$R - \{ 1\} $
$R - \{ - 1\} $
$R - \{ - 1,\;1\} $
माना $c , k \in R$ है। यदि $f ( x )=( c +1) x ^2+\left(1- c ^2\right)$ $x +2 k$ तथा $f ( x + y )= f ( x )+ f ( y )- xy , \forall x$, $y \in R$ है, तो $\mid 2(f(1)+f(2)+f(3)+$ $+ f (20)) \mid$ का मान है $..........$
मान लें कि $f: R \rightarrow R$ एक फलन निम्न प्रकार से परिभाषित किया गया है
$f(x)=\left\{\begin{array}{cl}\frac{\sin \left(x^2\right)}{x} & \text { if } x \neq 0, \\
0 & \text { if } x=0\end{array}\right.$
तब $x=0$ पर $f$
यदि $E = \{ 1,2,3,4\} $ तथा $F = \{ 1,2\} $, तब समुच्चय $E$ से $F$ में बनने वाले आच्छादक फलनों की संख्या है
यदि $f(x)=\frac{2^{2 x}}{2^{2 x}+2}, x \in R$, है, तो $\mathrm{f}\left(\frac{1}{2023}\right)+\mathrm{f}\left(\frac{2}{2023}\right)+\ldots \ldots .+\mathrm{f}\left(\frac{2022}{2023}\right)$ बराबर है
एक फलन $f$, समीकरण $3f(x) + 2f\left( {\frac{{x + 59}}{{x - 1}}} \right) = 10x + 30$, सभी $x \ne 1$ के लिए, को सन्तुष्ट करता है। तो $f(7)$ का मान है