A gas is compressed isothermally to half its initial volume. The same gas is compressed separately through an adiabatic process until its volume is again reduced to half. Then
Compressing the gas through adiabatic process will require more work to be done.
Compressing the gas isothermally or adiabatically will require the same amount of work.
Which of the case (whether compression through isothermal or through adiabatic process) requires more work will depend upon the atomicity of the gas.
Compressing the gas isothermally will require more work to be done.
In Column$-I$ process and in Column$-II$ first law of thermodynamics are given. Match them appropriately :
Column$-I$ | Column$-II$ |
$(a)$ Adiabatic | $(i)$ $\Delta Q = \Delta U$ |
$(b)$ Isothermal | $(ii)$ $\Delta Q = \Delta W$ |
$(iii)$ $\Delta U = -\Delta W$ |
In the following $P-V$ diagram two adiabatics cut two isothermals at temperatures $T_1$ and $T_2$ (fig.). The value of $\frac{{{V_a}}}{{{V_d}}}$ will be
Consider that an ideal gas ($n$ moles) is expanding in a process given by $P = f (V)$, which passes through a point $(V_0, \,p_0)$. Show that the gas is absorbing heat at $(p_0,\, V_0)$ if the slope of the curve $P = f (V)$ is larger than the slope of the adiabatic passing through $(p_0,\, V_0)$.
$Assertion :$ Adiabatic expansion is always accompanied by fall in temperature.
$Reason :$ In adiabatic process, volume is inversely proportional to temperature.
An ideal gas at pressure $P$ and volume $V$ is expanded to volume$ 2V.$ Column $I$ represents the thermodynamic processes used during expansion. Column $II$ represents the work during these processes in the random order.:
Column $I$ | Column $II$ |
$(p)$ isobaric | $(x)$ $\frac{{PV(1 - {2^{1 - \gamma }})}}{{\gamma - 1}}$ |
$(q)$ isothermal | $(y)$ $PV$ |
$(r)$ adiabatic | (z) $PV\,\iota n\,2$ |
The correct matching of column $I$ and column $II$ is given by