A geostationary satellite is orbiting the earth at a height of $6\,R$ above the surface of  earth ($R$ is the radius of earth). The time period of another satellite at a height of $2.5\,R$ from the surface of the earth is :-

  • A

    $3 \sqrt 2 \,hour$

  • B

    $6 \sqrt 2\, hour$

  • C

    $6\, hour$

  • D

    $72\, hour$

Similar Questions

The dependence of acceleration due to gravity $g$ on the distance $r$ from the centre of the earth assumed to be a sphere of radius $R$ of uniform density is as shown figure below

The correct figure is

The rotation of the earth having $R$ radius about its axis speeds up to a value such that  a man at latitude angle $60^o$ feels weightlessness. The duration of the day in such a  case is.

Given that mass of the earth is $M$ and its radius is $R$. A body is dropped from a height equal to the radius of the earth above the surface of the earth. When it reaches the ground its velocity will be

In order to make the effective acceleration due to gravity equal to zero at the equator, the angular velocity of rotation of the earth about its axis should be $(g = 10\,m{s^{ - 2}}$ and radius of earth is $6400 \,kms)$

The value of $g$ at the surface of earth is $9.8 \,m / s ^2$. Then the value of ' $g$ ' at a place $480 \,km$ above the surface of the earth will be nearly .......... $m / s ^2$ (radius of the earth is $6400 \,km$ )