એક જૂથમાં $4$ કુમારીઓ અને $7$ કુમારી છે. જેમાં કોઈ કુમારી ન હોય તો કેટલી ટુકડીઓ બનાવી શકાય.
since, the team will not include any girl, therefore, only boys are to be selected. $5$ boys out of $7$ boys can be selected in $^{7} C _{5}$ ways.
Therefore, the required number of ways $=^{7} C _{5}=\frac{7 !}{5 ! 2 !}=\frac{6 \times 7}{2}=21$
$MISSISSIPPI $ શબ્દના મુળાક્ષરોની ફેરબદલી કરીને કેટલા શબ્દ બનાવી શકાય કે જેમાં કોઇપણ બે $ S $ પાસપાસે ન આવે.
જો $\mathrm{m}, \mathrm{n} ;{ }^6 \mathrm{C}_{\mathrm{m}}+2\left({ }^6 \mathrm{C}_{\mathrm{m}+1}\right)+{ }^6 \mathrm{C}_{\mathrm{m}+2}>{ }^8 \mathrm{C}_3$ અને ${ }^{n-1} P_3:{ }^n P_4=1: 8$, ${ }^n P_{m+1}+{ }^{n+1} C_m$ ___________.
એક ક્લબની ચૂંટણીમાં સ્પર્ધકોની સંખ્યા એ મહતમ ઉમેદવારો કરતાં એક વધારે છે કે જે મતદાતા મત આપી શકે છે જો મતદાતા મત આપે તે કુલ $62$ રીતે આપે છે તો ઉમેદવારોની સંખ્યા મેળવો
ફક્ત અંકો $1, 2,3$ અને $4$ નો ઉપયોગ કરતા બનાવેલ, જેના અંકોનો સરવાળો $12$ થાય તેવા સાત અંકી ધન પૂર્ણાકોની સંખ્યા $........$ છે.
$52$ પત્તાંમાંથી $5$ પત્તાની પસંદગીમાં બરાબર એક બાદશાહ આવે તે કેટલા પ્રકારે નક્કી કરી શકાય ?