11.Thermodynamics
normal

A heat engine has an efficiency of $\frac{1}{6}$. When the temeprature of sink is reduced by $62^{\circ} {C}$, its efficiency get doubled. The temeprature of the source is $.....^{\circ} {C}$

A

$37$

B

$99$

C

$62$

D

$124$

Solution

Using, $\eta=1-\frac{ T _2}{ T _1}$

or $\frac{T_2}{T_1}=1-\eta$

According to first case

$\frac{ T _2}{ T _1}=1-\frac{1}{6}=\frac{5}{6} \ldots .$. (i)

According to second case

$\frac{ T _2-62}{ T _1}=1-2 \times \frac{1}{6}=\frac{2}{3} \ldots \ldots$. (ii)

$\frac{ T _2}{ T _1}-\frac{62}{ T _1}=\frac{2}{3}$

From equations $(i)$ and $(ii)$, we get

$\frac{5}{6}-\frac{62}{ T _1}=\frac{2}{3} \Rightarrow \frac{5}{6}-\frac{2}{3}=\frac{62}{ T _1}$

$\Rightarrow \frac{1}{6}=\frac{62}{ T _1}$

$T _1=372 K \text { or } T _1=372-372$

$T _1=99^{\circ} C$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.