A heavy particle is projected from a point on the horizontal at an angle $60^o$ with the horizontal with a speed of $10\ m/s$ . Then the radius of the curvature of its path at the instant of crossing the same horizontal will be    ......... $m$

  • A

    $20$

  • B

    $30$

  • C

    $25$

  • D

    $30$

Similar Questions

The velocity of projection of a body is increased by $2 \% .$ Other factors remaining unchanged, what will be the percentage change in the maximum height attained ? (in $\%$)

  • [AIIMS 2019]

Given below are two statements. One is labelled as Assertion $A$ and the other is labelled as Reason $R$.

Assertion A :Two identical balls $A$ and $B$ thrown with same velocity '$u$ ' at two different angles with horizontal attained the same range $R$. If $A$ and $B$ reached the maximum height $h_{1}$ and $h_{2}$ respectively, then $R =4 \sqrt{ h _{1} h _{2}}$

Reason R: Product of said heights.

$h _{1} h _{2}=\left(\frac{u^{2} \sin ^{2} \theta}{2 g }\right) \cdot\left(\frac{u^{2} \cos ^{2} \theta}{2 g }\right)$

Choose the $CORRECT$ answer 

  • [JEE MAIN 2022]

      Column $-I$

    Angle of projection

    Column $-II$
  $A.$ $\theta \, = \,{45^o}$   $1.$ $\frac{{{K_h}}}{{{K_i}}} = \frac{1}{4}$
  $B.$ $\theta \, = \,{60^o}$   $2.$ $\frac{{g{T^2}}}{R} = 8$
  $C.$ $\theta \, = \,{30^o}$   $3.$ $\frac{R}{H} = 4\sqrt 3 $
  $D.$ $\theta \, = \,{\tan ^{ - 1}}\,4$   $4.$ $\frac{R}{H} = 4$

$K_i :$ initial kinetic energy

$K_h :$ kinetic energy at the highest point

A projectile is thrown with a velocity of $10\,m / s$ at an angle of $60^{\circ}$ with horizontal. The interval between the moments when speed is $\sqrt{5 g}\,m / s$ is $..........\,s$ $\left(g=10\,m / s ^2\right)$.

A particle is projected from a point $A$ with velocity $u\sqrt 2$ at an angle of $45^o$ with horizontal as shown in fig. It strikes the plane $BC$ at right angles. The velocity of the particle at the time of collision is