A homogeneous electric field $E$ and a uniform magnetic field $\mathop B\limits^ \to $ are pointing in the same direction. A proton is projected with its velocity parallel to $\mathop E\limits^ \to $. It will
Go on moving in the same direction with increasing velocity
Go on moving in the same direction with constant velocity
Turn to its right
Turn to its left
Proton, deuteron and alpha particle of same kinetic energy are moving in circular trajectories in a constant magnetic field. The radii of proton, deuteron and alpha particle are respectively $r_p, r_d$ and $r_{\alpha}$ Which one of the following relation is correct?
A particle with charge $-Q$ and mass m enters a magnetic field of magnitude $B,$ existing only to the right of the boundary $YZ$. The direction of the motion of the $m$ particle is perpendicular to the direction of $B.$ Let $T = 2\pi\frac{m}{{QB}}$ . The time spent by the particle in the field will be
Fill the blank :
$(i)$ Static charge produces ...... field around it.(Electric, Magnetic)
$(ii)$ Moving charge produces ...... field around it.
The magnetic field is uniform for $y>0$ and points into the plane. The magnetic field is uniform and points out of the plane for $y<0$. A proton denoted by filled circle leaves $y=0$ in the $-y$-direction with some speed as shown below.Which of the following best denotes the trajectory of the proton?
If the magnetic field is parallel to the positive $y-$axis and the charged particle is moving along the positive $x-$axis (Figure), which way would the Lorentz force be for
$(a)$ an electron (negative charge),
$(b)$ a proton (positive charge).