A line $L$ passes through the points $(1, 1)$ and $(2, 0)$ and another line $L'$ passes through $\left( {\frac{1}{2},0} \right)$ and perpendicular to $L$. Then the area of the triangle formed by the lines $L,L'$ and $y$- axis, is
$15\over8$
$25\over4$
$25\over8$
$25\over16$
If the extremities of the base of an isosceles triangle are the points $(2a,0)$ and $(0,a)$ and the equation of one of the sides is $x = 2a$, then the area of the triangle is
In a right triangle $ABC$, right angled at $A$, on the leg $AC $ as diameter, a semicircle is described. The chord joining $A$ with the point of intersection $D$ of the hypotenuse and the semicircle, then the length $AC$ equals to
If $A$ is $(2, 5)$, $B$ is $(4, -11)$ and $ C$ lies on $9x + 7y + 4 = 0$, then the locus of the centroid of the $\Delta ABC$ is a straight line parallel to the straight line is
The triangle $PQR$ is inscribed in the circle ${x^2} + {y^2} = 25$. If $Q$ and $R$ have co-ordinates $(3,4)$ and $(-4, 3)$ respectively, then $\angle QPR$ is equal to
The origin and the points where the line $L_1$ intersect the $x$ -axis and $y$ -axis are vertices of right angled triangle $T$ whose area is $8$. Also the line $L_1$ is perpendicular to line $L_2$ : $4x -y = 3$, then perimeter of triangle $T$ is -