In the relation $P = \frac{\alpha }{\beta }{e^{ - \frac{{\alpha Z}}{{k\theta }}}}$ $P$ is pressure, $Z$ is the distance, $k$ is Boltzmann constant and $\theta$ is the temperature. The dimensional formula of $\beta$ will be

  • [IIT 2004]
  • A

    $[{M^0}{L^2}{T^0}]$

  • B

    $[{M^1}{L^2}{T^1}]$

  • C

    $[{M^1}{L^0}{T^{ - 1}}]$

  • D

    $[{M^0}{L^2}{T^{ - 1}}]$

Similar Questions

The dimensions of universal gravitational constant are

  • [AIPMT 1992]

If $L , C$ and $R$ denote the inductance, capacitance and resistance respectively, the dimensional formula for $C ^{2} LR$ is

A physcial quantity $x$ depends on quantities $y$ and $z$ as follows: $x = Ay + B\tan Cz$, where $A,\,B$ and $C$ are constants. Which of the following do not have the same dimensions

Consider the following equation of Bernouilli’s theorem. $P + \frac{1}{2}\rho {V^2} + \rho gh = K$ (constant)The dimensions of $K/P$  are same as that of which of the following

Stokes' law states that the viscous drag force $F$ experienced by a sphere of radius $a$, moving with a speed $v$ through a fluid with coefficient of viscosity $\eta$, is given by $F=6 \pi \eta a v$.If this fluid is flowing through a cylindrical pipe of radius $r$, length $l$ and a pressure difference of $p$ across its two ends, then the volume of water $V$ which flows through the pipe in time $t$ can be written as

$\frac{v}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$

where, $k$ is a dimensionless constant. Correct value of $a, b$ and $c$ are

  • [KVPY 2015]