In the expression $P = El^2m^{-5}G^{-2}$, $E$, $l$, $m$ and $G$ denote energy, mass, angular momentum and gravitational constant respectively. Show that $P$ is a dimensionless quantity.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given, expression is, $\quad P=E L^{2} m^{-5} G^{-2}$

where $\mathrm{E}$ is energy

$[\mathrm{E}]=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$

$\mathrm{m}$ is mass

$[\mathrm{m}]=\left[\mathrm{M}^{1}\right]$

$\mathrm{L}$ is angular momentum $[\mathrm{L}]=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$

$\mathrm{G}$ is gravitational constant $[\mathrm{G}]=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$

Substituting dimensions of each term in the given expression,

$[\mathrm{P}] =\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right] \times\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]^{2} \times\left[\mathrm{M}^{1}\right]^{-5} \times\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]^{-2}$

$=\left[\mathrm{M}^{1+2-5+2} \mathrm{~L}^{2+4-6} \mathrm{~T}^{-2-2+4}\right]=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$

Hence, $P$ is a dimensionless quantity.

Similar Questions

Number of particles is given by $n = - D\frac{{{n_2} - {n_1}}}{{{x_2} - {x_1}}}$ crossing a unit area perpendicular to $X-$axis in unit time, where ${n_1}$ and ${n_2}$ are number of particles per unit volume for the value of $x$ meant to ${x_2}$ and ${x_1}$. Find dimensions of $D$ called as diffusion constant

If velocity of light $c$, Planck’s constant $h$ and gravitational constant $G$ are taken as fundamental quantities, then express length in terms of dimensions of these quantities.

If the present units of length. time and mass $(m, s, k g)$ are changed to $100\; m, 100\; s$. $\frac{1}{10} \;k g$ then

Young's modulus of elasticity $Y$ is expressed in terms of three derived quantities, namely, the gravitational constant $G$, Planck's constant $h$ and the speed of light $c$, as $Y=c^\alpha h^\beta G^\gamma$. Which of the following is the correct option?

  • [IIT 2023]

Applying the principle of homogeneity of dimensions, determine which one is correct. where $\mathrm{T}$ is time period, $\mathrm{G}$ is gravitational constant, $M$ is mass, $r$ is radius of orbit.

  • [JEE MAIN 2024]