A long cylindrical glass vessel has a small hole of radius $'r'$ at its bottom. The depth to which the vessel can be lowered vertically in the deep water bath (surface tension $T$) without any water entering inside is

  • A

    $4T/\rho rg$

  • B

    $3T/\rho rg$

  • C

    $2T/\rho rg$

  • D

    $T/\rho rg$

Similar Questions

The pressure at the bottom of a tank containing a liquid does not depend on

A soap bubble, having radius of $1\; \mathrm{mm}$, is blown from a detergent solution having a surface tension of $2.5 \times 10^{-2}\; N / m$. The pressure inside the bubble equals at a point $Z_{0}$ below the free surface of water in a container. Taking $g=10\; \mathrm{m} / \mathrm{s}^{2}$ density of water $=10^{3} \;\mathrm{kg} / \mathrm{m}^{3},$ the value of $\mathrm{Z}_{0}$ is......$cm$

  • [NEET 2019]

There is an air bubble of radius $1.0\,mm$ in a liquid of surface tension $0.075\,Nm ^{-1}$ and density $1000\,kg$ $m ^{-3}$ at a depth of $10\,cm$ below the free surface. The amount by which the pressure inside the bubble is greater than the atmospheric pressure is $....Pa \left( g =10\,ms ^{-2}\right)$

  • [JEE MAIN 2023]

An air bubble of radius $r$ in water is at depth $h$ below the water surface at same instant. If $P$ is atmospheric pressure and $d$ and $T$ are the density and surface tension of water respectively. The pressure inside the bubble will be

Two narrow bores of diameter $5.0\, {mm}$ and $8.0\, {mm}$ are joined together to form a $U-$shaped tube open at both ends. If this ${U}$-tube contains water, what is the difference in the level of two limbs of the tube.

[Take surface tension of water ${T}=7.3 \times 10^{-2} \, {Nm}^{-1}$, angle of contact $=0, {g}=10\, {ms}^{-2}$ and density of water $\left.=1.0 \times 10^{3} \,{kg} \,{m}^{-3}\right]$ (in $mm$)

  • [JEE MAIN 2021]