A man running round a race-course notes that the sum of the distance of two flag-posts from him is always $10\ metres$ and the distance between the flag-posts is $8\ metres$. The area of the path he encloses in square metres is
$15\ \pi$
$12\ \pi$
$18\ \pi$
$8\ \pi$
Let $E_{1}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \mathrm{a}\,>\,\mathrm{b} .$ Let $\mathrm{E}_{2}$ be another ellipse such that it touches the end points of major axis of $E_{1}$ and the foci $E_{2}$ are the end points of minor axis of $E_{1}$. If $E_{1}$ and $E_{2}$ have same eccentricities, then its value is :
A point on the ellipse, $4x^2 + 9y^2 = 36$, where the normal is parallel to the line, $4x -2y-5 = 0$ , is
If the variable line $y = kx + 2h$ is tangent to an ellipse $2x^2 + 3y^2 = 6$ , then locus of $P(h, k)$ is a conic $C$ whose eccentricity equals
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{16}+\frac {y^2} {9}=1$.
If the eccentricity of an ellipse be $5/8$ and the distance between its foci be $10$, then its latus rectum is