Let the length of the latus rectum of an ellipse with its major axis long $x -$ axis and center at the origin, be $8$. If the distance between the foci of this ellipse is equal to the length of the length of its minor axis, then which one of the following points lies on it?

  • [JEE MAIN 2019]
  • A

    $\left( {4,\sqrt 2 ,2\sqrt 2 } \right)$

  • B

    $\left( {4,\sqrt 3 ,2\sqrt 2 } \right)$

  • C

    $\left( {4,\sqrt 3 ,2\sqrt 3 } \right)$

  • D

    $\left( {4,\sqrt 2 ,2\sqrt 3 } \right)$

Similar Questions

Let $P$ be a variable point on the ellipse $x^2 + 3y^2 = 3$ , then the maximum perpendicular distance of $P$ from the line $x -y = 10$ is

The co-ordinates of the foci of the ellipse $3{x^2} + 4{y^2} - 12x - 8y + 4 = 0$ are

A rod of length $12 \,cm$ moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point $P$ on the rod, which is $3\, cm$ from the end in contact with the $x-$ axis.

For $0 < \theta < \frac{\pi}{2}$, four tangents are drawn at the four points $(\pm 3 \cos \theta, \pm 2 \sin \theta)$ to the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. If $A(\theta)$ denotes the area of the quadrilateral formed by these four tangents, the minimum value of $A(\theta)$ is

  • [KVPY 2018]

The normal at a point $P$ on the ellipse $x^2+4 y^2=16$ meets the $x$-axis at $Q$. If $M$ is the mid point of the line segment $P Q$, then the locus of $M$ intersects the latus rectums of the given ellipse at the points

  • [IIT 2009]