Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

Tangent is drawn to ellipse $\frac{{{x^2}}}{{27}} + {y^2} = 1\,at\,(3\sqrt 3 \cos \theta ,\sin \theta )$  where $\theta \in (0, \pi /2)$ . Then the value of $\theta$ such that sum of intercepts on axes made by this tangent is minimum, is

A

$\pi /3$

B

$\pi /6$

C

$\pi /8$

D

$\pi /4$

Solution

$\frac{x \cos \theta}{3 \sqrt{3}}+y \sin \theta=1.$

Sum of intercepts $ = 3\sqrt 3 \sec \theta  + \cos ec\theta  = {\rm{f}}(\theta )$ say

$f'\,(\theta ) = \frac{{3\sqrt 3 {{\sin }^3}\theta  – {{\cos }^3}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }}$

At $\theta=\frac{\pi}{6}, f(\theta)$ is minimum

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.