- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
Tangent is drawn to ellipse $\frac{{{x^2}}}{{27}} + {y^2} = 1\,at\,(3\sqrt 3 \cos \theta ,\sin \theta )$ where $\theta \in (0, \pi /2)$ . Then the value of $\theta$ such that sum of intercepts on axes made by this tangent is minimum, is
A
$\pi /3$
B
$\pi /6$
C
$\pi /8$
D
$\pi /4$
Solution
$\frac{x \cos \theta}{3 \sqrt{3}}+y \sin \theta=1.$
Sum of intercepts $ = 3\sqrt 3 \sec \theta + \cos ec\theta = {\rm{f}}(\theta )$ say
$f'\,(\theta ) = \frac{{3\sqrt 3 {{\sin }^3}\theta – {{\cos }^3}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }}$
At $\theta=\frac{\pi}{6}, f(\theta)$ is minimum
Standard 11
Mathematics