Gujarati
4-2.Quadratic Equations and Inequations
medium

If ${\log _2}x + {\log _x}2 = \frac{{10}}{3} = {\log _2}y + {\log _y}2$ and $x \ne y,$ then $x + y = $

A

$2$

B

$65/8$

C

$37/6$

D

None of these

Solution

(d) We have ${\log _2}x + \frac{1}{{{{\log }_2}x}} = 3 + \frac{1}{3} = {\log _2}y + \frac{1}{{{{\log }_2}y}}$

$\therefore$ ${\log _2}x = 3,{\log _2}y = \frac{1}{3}$ $(x \ne y)$

==> $x = {2^3}$and$y = {2^{1/3}}$

$\Rightarrow x + y = 8 + {2^{1/3}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.