Let $\mathrm{a}=\max _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ and $\beta=\min _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$
If $8 x^{2}+b x+c=0$ is a quadratic equation whose roots are $\alpha^{1 / 5}$ and $\beta^{1 / 5}$, then the value of $c-b$ is equal to:
$43$
$42$
$50$
$47$
The set of all real numbers $x$ for which ${x^2} - |x + 2| + x > 0,$ is
Suppose $a, b, c$ are positive integers such that $2^a+4^b+8^c=328$. Then, $\frac{a+2 b+3 c}{a b c}$ is equal to
If $a,b,c$ are distinct real numbers and $a^3 + b^3 + c^3 = 3abc$ , then the equation $ax^2 + bx + c = 0$ has two roots, out of which one root is
Complete solution set of the inequality $\left( {{{\sec }^{ - 1}}\,x - 4} \right)\left( {{{\sec }^{ 1}}\,x - 1} \right)\left( {{{\sec }^{ - 1}}\,x - 2} \right) \ge 0$ is
The value of $x$ in the given equation ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}$is