એક વ્યક્તિ તેની લોનની ચુકવણી માટે પ્રથમ હપતામાં $Rs.$ $100 $ ભરે છે. જો તે દર મહિને હપતાની રકમમાં $Rs \,5$ વધારે ભરે, તો તેના $30$ માં હપતામાં કેટલી રકમ ચૂકવશે?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The first installment of the load is $Rs.$ $100 .$

The second installment of the load is $Rs.$ $105$ and so on.

The amount that the man repays every month forms an $A.P.$

The $A.P.$ is $100,105,110 \ldots$

First term, $a=100$

Common difference, $d=5$

$A_{30}=a+(30-1) d$

$=100+(29)(5)$

$=100+145$

$=245$

Thus, the amount to be paid in the $30^{\text {th }}$ installment is $Rs.$ $245 .$

Similar Questions

$1$ અને $31$ વચ્ચે જ સંખ્યાઓ એવી રીતે મૂકવામાં આવે છે કે જેથી બનતી શ્રેણી સમાંતર શ્રેણી હોય અને $7$ મી અને $(m-1)$ મી સંખ્યાનો ગુણોત્તર $5 : 9$ હોય, તો $m$ નું મૂલ્ય શોધો. 

$p , q \in R$ માટે, વાસ્તવિક વિધેય $f(x)=(x- p )^{2}- q , x \in R$ અને $q >0$ ધ્યાનેન લો. ધારોકે $a _{1}, a _{2}, a _{3}$ અને $a _{4}$ એ સમાંતર શ્રેણીમાં છે તથા તેનો મધ્યક $p$ અને સામાન્ય તફાવત ધન છે. જો પ્રત્યેક $i=1,2,3,4$ માટે $\left|f\left( a _{i}\right)\right|=500$, તો $f(x)=0$ નાં બીજો વચ્ચેનો નિરપેક્ષ તફાવત ............ છે.

  • [JEE MAIN 2022]

જો $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$  $({x_i} \ne \,0\, $ બધા $\,i\, = 1,2,....,n)$ એ સમાંતર શ્રેણીમાં હોય કે જ્યાં $x_1 = 4$ અને $x_{21} = 20$ અને $x_n > 50$ જ્યાં $n$ એ ન્યૂનતમ ધન પૂર્ણાંક સંખ્યા છે તો $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $ ની કિમત મેળવો

  • [JEE MAIN 2018]

ધારો કે  $\mathrm{S}_{\mathrm{n}}$ સમાંતર શ્રેણીનાં પહેલા $\mathrm{n}$ પદોનો સરવાળો દર્શાવે  છે. જો  $\mathrm{S}_{20}=790$ અને $\mathrm{S}_{10}=145$ હોય, તો  $\mathrm{S}_{15}-\mathrm{S}_5=$....................

  • [JEE MAIN 2024]

બધી બે અંકોની સંખ્યા કે જેને છ વડે ભાગતા શેષ ચાર મળે, તેનો સરવાળો કેટલો થાય ?