एक व्यक्ति ऋण का भुगतान $100$ रुपये की प्रथम किश्त से शुरू करता है। यदि वह प्रत्येक किश्त में $5$ रुपये प्रति माह बढ़ता है तो $30$ वीं किश्त की राशि क्या होगी ?
The first installment of the load is $Rs.$ $100 .$
The second installment of the load is $Rs.$ $105$ and so on.
The amount that the man repays every month forms an $A.P.$
The $A.P.$ is $100,105,110 \ldots$
First term, $a=100$
Common difference, $d=5$
$A_{30}=a+(30-1) d$
$=100+(29)(5)$
$=100+145$
$=245$
Thus, the amount to be paid in the $30^{\text {th }}$ installment is $Rs.$ $245 .$
प्रथम $n$ प्राकृत संख्याओं का योग होता है
यदि ${ }^{ n } C _{4},{ }^{ n } C _{5}$ तथा ${ }^{ n } C _{6}$ समान्तर श्रेणी में हो, तो $n$ का मान हो सकता है
यदि $\tan \left(\frac{\pi}{9}\right), x , \tan \left(\frac{7\pi}{18}\right)$ एक समांतर श्रेढ़ी में हैं तथा $\tan \left(\frac{\pi}{9}\right), y , \tan \left(\frac{5 \pi}{18}\right)$ भी एक समांतर श्रेढ़ी में हैं. तो $| x -2 y |$ बराबर है
यदि $b + c,$ $c + a,$ $a + b$ हरात्मक श्रेणी में हों, तो $\frac{a}{{b + c}},\frac{b}{{c + a}},\frac{c}{{a + b}}$ होंगे
यदि एक समान्तर श्रेणी के प्रथम $n$ पदों का योग उसके प्रथम $m$ पदों के योग के बराबर हो $(m \ne n)$, तो उसके $(m + n)$ पदों का योग होगा