A manufacturer reckons that the value of a machine, which costs him $Rs.$ $15625$ will depreciate each year by $20 \% .$ Find the estimated value at the end of $5$ years.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

cost of machine $= Rs .15625$

Machine depreciates by $20 \%$ every year.

Therefore, its value after every year is $80 \%$ of the original cost i.e., $\frac{4}{5}$ of the original cost.

$\therefore $ Value at the end of $5$ years $ = 15625 \times \underbrace {\frac{4}{5} \times \frac{4}{5} \times  \ldots  \times \frac{4}{5}}_{5\,\,\,times} = 5 \times 1024 = 5120$

Thus, the value of the machine at the end of $5$ years is $Rs.$ $5120 .$

Similar Questions

If $a_1 , a_2, a_3, . . . . , a_n, ....$ are in $A.P.$ such that $a_4 - a_7 + a_{10}\, = m$, then the sum of first $13$ terms of this $A.P.$, is .............. $\mathrm{m}$

  • [JEE MAIN 2013]

If the sum of the first $n$ terms of the series $\sqrt 3  + \sqrt {75}  + \sqrt {243}  + \sqrt {507}  + ......$ is $435\sqrt 3 $ , then $n$ equals

  • [JEE MAIN 2017]

Let ${\left( {1 - 2x + 3{x^2}} \right)^{10x}}  = {a_0} + {a_1}x + {a_2}{x^2} + .....+{a_n}{x^n},{a_n} \ne 0$, then the arithmetic mean of $a_0,a_1,a_2,...a_n$ is

The sum of the first four terms of an $A.P.$ is $56$. The sum of the last four terms is $112$. If its first term is $11$, the number of terms is

Show that the sum of $(m+n)^{ th }$ and $(m-n)^{ th }$ terms of an $A.P.$ is equal to twice the $m^{\text {th }}$ term.