A manufacturer reckons that the value of a machine, which costs him $Rs.$ $15625$ will depreciate each year by $20 \% .$ Find the estimated value at the end of $5$ years.
cost of machine $= Rs .15625$
Machine depreciates by $20 \%$ every year.
Therefore, its value after every year is $80 \%$ of the original cost i.e., $\frac{4}{5}$ of the original cost.
$\therefore $ Value at the end of $5$ years $ = 15625 \times \underbrace {\frac{4}{5} \times \frac{4}{5} \times \ldots \times \frac{4}{5}}_{5\,\,\,times} = 5 \times 1024 = 5120$
Thus, the value of the machine at the end of $5$ years is $Rs.$ $5120 .$
Let $\alpha, \beta$ and $\gamma$ be three positive real numbers. Let $f ( x )=\alpha x ^{5}+\beta x ^{3}+\gamma x , x \in R \quad$ and $\quad g : R \rightarrow R$ be such that $g(f(x))=x$ for all $x \in R$. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be in arithmetic progression with mean zero, then the value of $f\left(g\left(\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)\right)\right)$ is equal to.
The sum of the first $20$ terms common between the series $3 +7 + 1 1 + 15+ ... ......$ and $1 +6+ 11 + 16+ ......$, is
The sum of all those terms, of the anithmetic progression $3,8,13, \ldots \ldots .373$, which are not divisible by $3$,is equal to $.......$.
If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the $A.M.$ between $a$ and $b,$ then find the value of $n$.
For any three positive real numbers $a,b,c$ ; $9\left( {25{a^2} + {b^2}} \right) + 25\left( {{c^2} - 3ac} \right) = 15b\left( {3a + c} \right)$ then