એક વેપારી ગણતરી કરે છે કે એક મશીન તેને $Rs$ $15,625$ માં મળે છે અને દર વર્ષે તેનો ઘસારો $20\ %$ છે, તો પાંચ વર્ષ પછી આ મશીનની અંદાજિત કિંમત કેટલી હશે ? 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

cost of machine $= Rs .15625$

Machine depreciates by $20 \%$ every year.

Therefore, its value after every year is $80 \%$ of the original cost i.e., $\frac{4}{5}$ of the original cost.

$\therefore $ Value at the end of $5$ years $ = 15625 \times \underbrace {\frac{4}{5} \times \frac{4}{5} \times  \ldots  \times \frac{4}{5}}_{5\,\,\,times} = 5 \times 1024 = 5120$

Thus, the value of the machine at the end of $5$ years is $Rs.$ $5120 .$

Similar Questions

જો ${a_1},{a_2},{a_3}, \ldots $ એ સંમાતર શ્રેણીના પદ છે.જો $\frac{{{a_1} + {a_2} + \ldots + {a_p}}}{{{a_1} + {a_2} + \ldots + {a_q}}} = \frac{{{p^2}}}{{{q^2}}},p \ne q$ તો $\frac{{{a_6}}}{{{a_{21}}}}$ = ______.

  • [AIEEE 2006]

જો સમાંતર શ્રેણી નું $p$  મું, $q$  મું , $r$  મું પદ અનુક્રમે  $1/a, 1/b, 1/c$   હોય તો $ab(p - q) + bc(q - r) + ca(r - p) = …….$ 

જો $a^{1/x} = b^{1/y} = c^{1/z}$ અને $a, b, c$ સમગુણોત્તર શ્રેણીમાં હોય, તો $x, y$ અને $z$ એ.....

અહી $a_{1}, a_{2}, \ldots \ldots, a_{21}$ એ સમાંતર શ્રેણીમાં છે કે જેથી $\sum_{n=1}^{20} \frac{1}{a_{n} a_{n+1}}=\frac{4}{9}$ છે. જો શ્રેણીનાં પદોનો સરવાળો $189,$ હોય તો  $a_{6} \mathrm{a}_{16}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

$a$ અને $b$ વચ્ચેના $n$ સમાંતર મધ્યકોનો સરવાળો કેટલો થાય ?