एक निर्माता घोषित करता है कि उसकी मशीन जिसका मूल्य $15625$ रुपये है, हर वर्ष $20 \%$ की दर से उसका अवमूल्यन होता है। $5$ वर्ष बाद मशीन का अनुमानित मूल्य ज्ञात कीजिए।
cost of machine $= Rs .15625$
Machine depreciates by $20 \%$ every year.
Therefore, its value after every year is $80 \%$ of the original cost i.e., $\frac{4}{5}$ of the original cost.
$\therefore $ Value at the end of $5$ years $ = 15625 \times \underbrace {\frac{4}{5} \times \frac{4}{5} \times \ldots \times \frac{4}{5}}_{5\,\,\,times} = 5 \times 1024 = 5120$
Thus, the value of the machine at the end of $5$ years is $Rs.$ $5120 .$
यदि किसी समान्तर श्रेणी के $n$ पदों का योग $2{n^2} + 5n$ हो, तो $n$ वाँ पद होगा
दी गई एक समांतर श्रेढ़ी के सभी पद धनपूर्णांक हैं। इसके प्रथम नौ पदों का योग $200$ से अधिक तथा $220$ से कम है। यदि इसका दूसरा पद $12$ है, तो इसका चौथा पद है
यदि एक समान्तर श्रेणी का $10^{\text {th }}$ वां पद $\frac{1}{20}$ है तथा इसका $20^{\text {th }}$ वां पद $\frac{1}{10}$ है, तो इसके प्रथम $200$ पदों का योग है
किसी कार्य के भाग को निश्चित दिनों में करने के लिए $150$ कामगार लगाये जाते हैं। दूसरे दिन $4$ कामगार हटा दिये जाते हैं तथा तीसरे दिन $4$ फिर हटा दिये जाते हैं। यह प्रक्रिया इसी प्रकार चलती रहती है। इस प्रकार कार्य सम्पादन के लिए $8$ दिन अधिक लगते हैं, तो उन दिनों की संख्या, जिनमें कार्य सम्पादन हुआ था, होगी
प्रथम $n$ प्राकृत संख्याओं का समान्तर माध्य होगा