13.Oscillations
medium

A mass $m$ is attached to two springs as shown in figure. The spring constants of two springs are $K _1$ and $K _2$. For the frictionless surface, the time period of oscillation of mass $m$ is

A

$\frac{1}{2 \pi} \sqrt{\frac{ K _1+ K _2}{ m }}$

B

$\frac{1}{2 \pi} \sqrt{\frac{ K _1- K _2}{ m }}$

C

$2 \pi \sqrt{\frac{ m }{ K _1+ K _2}}$

D

$2 \pi \sqrt{\frac{m}{K_1-K_2}}$

(JEE MAIN-2023)

Solution

On displacing $m$ to right by $x$

$F =-\left( k _1 x+ k _2 x \right)=-\left( k _1+ k _2\right) x$

$a =\frac{ F }{ m }=-\left(\frac{ k _1+ k _2}{ m }\right) x =-\omega^2 x$

$\therefore \omega=\sqrt{\frac{ k _1+ k _2}{ m }} \Rightarrow T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{ m }{ k _1+ k _2}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.