प्रदर्शित चित्र में एक द्रव्यमान $m$ दो स्प्रिंगों से जुड़ा है। दोनों स्प्रिंगो के स्प्रिंग नियतांक $K_1$ व $K_2$ है। घर्षण रहित सतह के लिए, द्रव्यमान $m$ के दोलन का आवर्तकाल है:

219438-q

  • [JEE MAIN 2023]
  • A

    $\frac{1}{2 \pi} \sqrt{\frac{ K _1+ K _2}{ m }}$

  • B

    $\frac{1}{2 \pi} \sqrt{\frac{ K _1- K _2}{ m }}$

  • C

    $2 \pi \sqrt{\frac{ m }{ K _1+ K _2}}$

  • D

    $2 \pi \sqrt{\frac{m}{K_1-K_2}}$

Similar Questions

एक $5 \;kg$ का द्रव्यमान एक स्प्रिंग से जुडा है। चित्र में सरल आवर्त गति करते निकाय की स्थितिज ऊर्जा वक्र दिखाया गया है। $4$ मीटर लम्बाई के सरल लोलक तथा स्प्रिंग निकाय के आवर्त काल समान हैं। जिस ग्रह पर यह प्रयोग किया जाता है, वहाँ गुरूत्वीय त्वरण का मान क्या है ?

  • [JEE MAIN 2021]

समान स्प्रिंग् नियतांक $k$ वाली दो स्प्रिंगों को श्रेणीक्रम में जोड़ा जाता है तथा बाद में समान्तर क्रम में जोड़ते हैं। यदि इनसे $m$द्रव्यमान का पिण्ड लटका है तो उनकी ऊध्र्वाधर दोलनों की आवृत्तियों का अनुपात होगा

आरेख में दर्शाए अनुसार कमानी स्थिरांक $'2k'$ की दो सर्वसम कमानियाँ द्रव्यमान $m$ के किसी गुटके और दढ़ सपोर्ट से जुड़ी हैं। जब इस गुटके को इसकी साम्यावस्था से किसी एक ओर विस्थापित किया जाता है तो सरल आवर्त गति करने लगता है। इस निकाय के दोलन का आवर्तकाल होगा।

  • [JEE MAIN 2021]

एक द्रव्यमान $m$ को ${K_1}$ व ${K_2}$ बल नियतांक वाली दो स्प्रिंगों से अलग-अलग लटकाने पर इनकी सरल आवर्त गतियों के आवर्तकाल क्रमश: ${t_1}$ व ${t_2}$ हैं। यदि उसी द्रव्यमान $m$ को चित्रानुसार दोनों स्प्रिंगों से लटकाया जाये तो इसकी सरल आवर्त गति के आवर्तकाल $t$ के लिए सही सम्बन्ध है

  • [AIPMT 2002]

बराबर द्रव्यमान के दो पिण्ड $M$ तथा $N$ दो द्रव्यमानहीन स्प्रिंगों से अलग-अलग लटके हैं। स्प्रिंग के बल नियतांक क्रमश: ${k_1}$ तथा ${k_2}$ है। यदि दोनों पिण्ड ऊध्र्वाधर तल में इस प्रकार कम्पन करते हैं कि इनके अधिकतम वेग बराबर हैं, तब $M$ के कम्पन के आयाम का $N$ के साथ अनुपात है

  • [AIEEE 2003]