કોઈ એક સ્પ્રિંગ સાથે જોડાયેલ દ્રવ્યમાન સમક્ષિતિજ સમતલમાં કોણીય વેગ $\omega $ સાથે ઘર્ષણ કે અવમંદનરહિત દોલનો માટે મુક્ત છે. તેને $t = 0 $ એ, $x_0$ અંતર સુધી ખેંચવામાં આવે છે અને કેન્દ્ર તરફ $v_0$ , વેગથી ધક્કો મારવામાં આવે છે. પ્રાચલો , $\omega ,x-0$ અને $v_0$ નાં પદમાં પરિણામી દોલનોના કંપવિસ્તાર નક્કી કરો. (સૂચન : સમીકરણ $x = a\, cos\,(\omega t + \theta )$ સાથે શરૂઆત કરો અને નોંધ કરો કે, પ્રારંભિક વેગ ઋણ છે.)

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The displacement equation for an oscillating mass is given by:

$x=A \cos (\omega t+\theta)$

Where,

$A$ is the amplitude $x$

is the displacement $\theta$

is the phase constant

Velocity, $v=\frac{d x}{d t}=-A \omega \sin (\omega t+\theta)$

At $t=0, x=x_{0}$

$A \cos \theta=x_{0} \ldots(i)$

And, $\frac{d x}{d t}=-v_{0}=A \omega \sin \theta$

$A \sin \theta=\frac{v_{0}}{\omega} \ldots(i i)$

Squaring and adding equations ( $i$ ) and ($ ii $), we get

$A^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=x_{0}^{2}+\left(\frac{v_{0}^{2}}{\omega^{2}}\right)$

$\therefore A=\sqrt{x_{0}^{2}+\left(\frac{v_{0}}{\omega}\right)^{2}}$

Hence, the amplitude of the resulting oscillation is $\sqrt{x_{0}^{2}+\left(\frac{v_{0}}{\omega}\right)^{2}}$

Similar Questions

$600 \,N/m $ બળ અચળાંક ધરાવતી સ્પ્રિંગ ધરાવતી બંદૂકમાં $15\, g$ નો બોલ મૂકીને $5\,cm$ દબાવીને મુકત કરતાં દડાની મહત્તમ અવધી કેટલી ..... $m$ થાય? ($g = 10\, m/s^2$)

એક $500 \,N \,m^{-1}$ સ્પ્રિંગ અચળાંક ધરાવતી સ્પ્રિંગની સાથે $5 \,kg$ નો કૉલર (પટ્ટો) જોડાયેલ છે. તે ઘર્ષણ વગર સમક્ષિતિજ સળિયા પર સરકે છે. આ કૉલર તેના સંતુલન સ્થાનેથી $10.0\, cm$ સ્થાનાંતરિત થઈ અને મુક્ત થાય છે. આ કૉલર માટે

$(a)$ દોલનોનો આવર્તકાળ

$(b)$ મહત્તમ ઝડપ અને

$(e)$ મહત્તમ પ્રવેગની ગણતરી કરો.

આકૃતિ $-1$ માં દર્શાવ્યા પ્રમાણે $k$ બળ અચળાંક ધરાવતી સ્પ્રિંગના છેડે $M$ દળનો પદાર્થ જોડેલો છે.અને આકૃતિ $-2$ સ્પ્રિંગમાંશ્રેણીમાં જોડેલ છે. જો તેમના આવર્તકાળનો ગુણોત્તર $\frac{ T _{ b }}{ T _{ a }}=\sqrt{ x }$ હોય તો $x$નું મૂલ્ય નજીકના પૂર્ણાંકમાં કેટલું હશે?

 

  • [JEE MAIN 2021]

બાજુની આકૃતિમાં દર્શાવ્યા મુજબ, જો કોઈ લીસા ઢાળ પર સરખી સ્પ્રિંગોથી કોઈ દળ ગોઠવેલું હોય તો આ દોલન કરતા તંત્રનો આવર્તકાળ કેટલો થશે ?

$l_{A}$ અને $l_{B}$ લંબાઈ ધરાવતી બે સ્પ્રિંગના છેડે અનુક્રમે $M_{A}$ અને $M_{B}$ દળ લટકવેલા છે. જો તેમના દોલનોની આવૃતિ વચ્ચેનો સંબંધ $f_{A}=2 f_{B}$ હોય તો .....

  • [AIPMT 2000]