किसी कमानी से लटका एक पिण्ड एक क्षैतिज तल में कोणीय वेग $\omega$ से घर्षण या अवमंदन रहित दोलन कर सकता है। इसे जब $x_{0}$ दूरी तक खींचते हैं और खींचकर छोड़ देते हैं तो यह संतुलन केन्द्र से समय $t=0$ पर $v_{0}$ वेग से गुजरता है। प्राचल $\omega . x_{0}$ तथा $v_{0}$ के पदों में परिणामी दोलन का आयाम ज्ञात करिये। [संकेत: समीकरण $x=a \cos (\omega t+\theta)$ से प्रारंभ कीजिए। ध्यान रहे कि प्रारंभिक वेग ऋणात्मक है। ]

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The displacement equation for an oscillating mass is given by:

$x=A \cos (\omega t+\theta)$

Where,

$A$ is the amplitude $x$

is the displacement $\theta$

is the phase constant

Velocity, $v=\frac{d x}{d t}=-A \omega \sin (\omega t+\theta)$

At $t=0, x=x_{0}$

$A \cos \theta=x_{0} \ldots(i)$

And, $\frac{d x}{d t}=-v_{0}=A \omega \sin \theta$

$A \sin \theta=\frac{v_{0}}{\omega} \ldots(i i)$

Squaring and adding equations ( $i$ ) and ($ ii $), we get

$A^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=x_{0}^{2}+\left(\frac{v_{0}^{2}}{\omega^{2}}\right)$

$\therefore A=\sqrt{x_{0}^{2}+\left(\frac{v_{0}}{\omega}\right)^{2}}$

Hence, the amplitude of the resulting oscillation is $\sqrt{x_{0}^{2}+\left(\frac{v_{0}}{\omega}\right)^{2}}$

Similar Questions

एक द्रव्यमान $m$, समान लम्बाई की दो स्प्रिंगों से लटका हुआ है। स्प्रिंगों के बल नियतांक क्रमश:${k_1}$ एवं ${k_2}$ हैं। जब पिण्ड को ऊध्र्वाधर दिशा में दोलन कराया जाता है, तो उसका आवर्तकाल होगा

बल नियतांक $k$ वाली किसी स्प्रिंग के एक सिरे को एक ऊध्र्वाधर दीवार से कस कर दूसरे सिरे पर $m$ द्रव्यमान का एक गुटका जोड़ा  जाता है जो कि एक चिकने क्षैतिज तल पर रखा है गुटके के दूसरे ओर ${x_0}$ दूरी पर एक और ऊध्र्वाधर दीवार है। यदि स्प्रिंग को $2{x_0}$ लम्बाई से संपीड़ित करके छोड़ दें तो गुटका कितने समय पश्चात् दीवार से टकरायेगा

एक $m$ द्रव्यमान को नगण्य द्रव्यमान के स्प्रिंग से लटकाया जाता है तथा निकाय $f_1$ आवृत्ति से दोलन करता है। यदि समान स्प्रिंग से $9$ मी. द्रव्यमान लटकाने पर दोलन की आवृत्ति $f_2$ है। $\frac{f_1}{f_2}$ का मान. . . . . . . हैं

  • [JEE MAIN 2024]

स्प्रिंग् नियतांक $K$ की एक स्प्रिंग् पर $m$ द्रव्यमान लटकाया गया है। अब ​स्प्रिंग् को दो बराबर भागों में काटकर किसी एक पर वही द्रव्यमान लटकाया जाता है, तो नया ​स्प्रिंग् नियतांक होगा

$1 \,kg$ संहति के किसी गुटके को एक कमानी से बाँधा गया है । कमानी का कमानी स्थिरांक $50 \,N\, m ^{-1}$ है । गुटके को उसकी साम्यावस्था की स्थिति $x=0$ से $t=0$ पर किसी घर्षणहीन पृष्ठ पर कुछ दूरी $x=10 \,cm$ तक खींचा जाता है । जब गुटका अपनी माध्य-र्थिति से $5\, cm$ दर है, तब उसकी गतिज, स्थितिज तथा कुल ऊर्जाएँ परिकलित कीजिए ।