6.System of Particles and Rotational Motion
medium

$70$ सेंटीमीटर लंबी और $4.00\, kg$ द्रव्यमान की धातु की छड़ के दोनों सिरों से $10$ सेंटीमीटर दूर रखे दो क्षुर-धारों पर टिकी है। इसके एक सिरे से $40$ सेंटीमीटर की दूरी पर $6.00\, kg$ द्रव्यमान का एक भार लटकाया गया है। क्षुर-धारों पर लगने वाले प्रतिक्रिया बलों की गणना कीजिए। (छड़ को समांग और समान अनुप्रस्थ काट वाली मान सकते हैं।)

Option A
Option B
Option C
Option D

Solution

the rod $AB$, the positions of the knife edges $K _{1}$ and $K _{2},$ the centre of gravity of the rod at $G$ and the suspended load at $P$.

Note the weight of the rod $W$ acts at its centre of gravity $G$. The rod is uniform in cross section and homogeneous; hence $G$ is at the centre of the rod; $AB =70 cm . AG =35 cm , AP$

$=30 cm , PG =5 cm , AK _{1}= BK _{2}=10 cm$ and $K _{1} G$

$= K _{2} G =25 cm .$ Also, $W=$ weight of the rod $=$

$4.00 kg$ and $W_{1}=$ suspended load $=6.00 kg$ $R_{1}$ and $R_{2}$ are the normal reactions of the support at the knife edges. For translational equilibrium of the rod. $R_{1}+R_{2}-W_{1}-W=0$

Note $W_{1}$ and $W$ act vertically down and $R_{1}$ and $R_{2}$ act vertically up.

For considering rotational equilibrium, we take moments of the forces. A conventent point to take moments about is $G$. The moments of $R _{2}$ and $W _{1}$ are anticlockwise $(+ve)$, whereas the moment of $R _{1}$ is clockwise $(-ve)$. For rotational equilibrium, $-R_{1}\left( K _{1} G \right)+W_{1}( PG )+R_{2}\left( K _{2} G \right)=0$

It is given that $W=4.00 g { N }$ and $W_{1}=6.00 g$

N. where $g=$ acceleration due to gravity. We take $g=9.8 m / s ^{2}$

With numerical values inserted,

$R_{1}+R_{2}-4.00 g-6.00 g=0$

or $R_{1}+R_{2}=10.00 g N$

$=98.00 N$

$-0.25 R_{1}+0.05 W_{1}+0.25 R_{2}=0$

or $R_{1}-R_{2}=1.2 g N =11.76 N$

$R_{1}=54.88 N$

$R_{2}=43.12 N$

Thus the reactions of the support are about $55 N$ at $K _{1}$ and $43 N$ at $K _{2}$

Standard 11
Physics

Similar Questions

एक निर्देश तंत्र जो एक जड़त्वीय निर्देश तंत्र की तुलना में त्वरित हो, अजड़त्वीय निर्देश तंत्र कहलाता है। स्थिर कोणीय वेग $\omega$ से घूमती हुई डिस्क पर बद्ध (fixed) निर्देश तंत्र अजड़त्वीय तंत्र का एक उदाहरण है। $m$ द्रव्यमान का एक कण घूमती हुई डिस्क पर गतिमान है। गतिमान कण डिस्क पर बद्ध निर्देश तंत्र के सापेक्ष बल $\vec{F}_{\text {rot }}$ तथा एक जड़त्वीय निर्देश तंत्र के सापेक्ष बल $\vec{F}_{\text {in }}$ को महसूस करता है। $\vec{F}_{\text {rot }}$ और $\vec{F}_{\text {in }}$ के बीच का संबंध निम्नलिखित समीकरण में दिया गया है

$\vec{F}_{\text {rot }}=\vec{F}_{\text {in }}+2 m\left(\vec{v}_{\text {rot }} \times \vec{\omega}\right)+m(\vec{\omega} \times \vec{r}) \times \vec{\omega},$

यहाँ पर $\vec{v}_{\text {rot }}$ घूमते हुए निर्देश तंत्र में कण का वेग है तथा $\vec{r}$ कण का डिस्क के मध्य बिन्दु के सापेक्ष स्थिति सदिश (position vector) है।

मानिए कि $R$ त्रिज्या की एक डिस्क, जिसमें व्यास के समानान्तर एक घर्षणरहित खाँचा है, एक स्थिर कोणीय गति $\omega$ से अपने अक्ष पर वामावर्त दिशा में घूम रही है। एक निर्देश तंत्र मानिए जिसका मूलबिंदू डिस्क के मध्य बिन्दु पर है एवं $x$-अक्ष खाँचे के समानान्तर है, $y$-अक्ष खाँचे के अभिलम्ब पर है एवं $z$-अक्ष घूमने वाली अक्ष के समानान्तर है $(\vec{\omega}=\omega \hat{k}) । m$ द्रव्यमान वाले एक छोटे गुटके को समय $t=0$ पर $\vec{r}=(R / 2) \hat{i}$ बिन्दु पर धीरे से इस तरह से रखा जाता है कि वो सिर्फ खाँचे में ही चल सके।

($1$) समय $t$ पर गुटके की दूरी $r$ का मान है:

$(A)$ $\frac{R}{4}\left(e^{\omega t}+e^{-\omega t}\right)$

$(B)$ $\frac{R}{2} \cos \omega t$

$(C)$ $\frac{R}{4}\left(e^{2 \omega t}+e^{-2 \omega t}\right)$

$(D)$ $\frac{R}{2} \cos 2 \omega t$

($2$) गुटके पर डिस्क की नेट प्रतिक्रिया (net reaction) है:

$(A)$ $\frac{1}{2} m \omega^2 R\left(e^{2 \omega t}-e^{-2 \omega t}\right) \hat{j}+m g \hat{k}$

$(B)$ $\frac{1}{2} m \omega^2 R\left(e^{\omega t}-e^{-\omega t}\right) \hat{j}+m g \hat{k}$

$(C)$ $-m \omega^2 R \cos \omega t \hat{j}-m g \hat{k}$

$(D)$ $m \omega^2 R \sin \omega t \hat{j}-m g \hat{k}$

दिये गए सवाल का जवाब दीजिये ($1$) और ($2$)

normal
(IIT-2016)

भार $W$ तथा लम्बाई $L$ की एक क्षैतिज (horizontal) एकसमान बीम (uniform beam) के एक सिरे को एक उर्ध्वाधर दीवार के बिन्दु $O$ पर कब्जे से अटकाया गया (hinged) है। बीम का दूसरा सिरा $P$ एक भारहीन तथा न खींचने वाली (inextensible) डोरी से बंधा है। डोरी का दूसरा सिरा $Q$ बिन्दु $O$ पर स्थित कब्जे (hinge) से $L$ ऊंचाई पर बंधा है। बीम के सिरे $P$ से $\alpha W$ भार का एक गुटका जुड़ा है, जैसा चित्र में दर्शाया गया है। चित्र पैमाने (scale) के अनुसार नहीं है। डोरी अधिकतम तनाव $(2 \sqrt{2}) W$ वहन कर सकती है। निम्न में से कौन सा(से) कथन सही है (हैं)?

$(A)$ बिन्दु $O$ पर लगे प्रतिक्रिया बल का ऊर्ध्वाधर घटक, $\alpha$ पर निर्भर नहीं करता है

$(B)$ बिन्दु $O$ पर लग प्रतिक्रिया बल का क्षैतिज घटक, $\alpha=0.5$ के लिए, $W$ के बराबर है

$(C)$ $\alpha=0.5$ के लिए डोरी में तनाव $2 W$ है

$(D)$ यदि $\alpha>1.5$ हो, तो डोरी टूट जाएगी

normal
(IIT-2021)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.