- Home
- Standard 11
- Physics
A metallic bar of Young's modulus, $0.5 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$ and coefficient of linear thermal expansion $10^{-5}{ }^{\circ} \mathrm{C}^{-1}$, length $1 \mathrm{~m}$ and area of cross-section $10^{-3} \mathrm{~m}^2$ is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ without expansion or bending. The compressive force developed in it is :
$50 \times 10^3 \mathrm{~N}$
$100 \times 10^3 \mathrm{~N}$
$2 \times 10^3 \mathrm{~N}$
$5 \times 10^3 \mathrm{~N}$
Solution
Thermal strain $=$ Longitudinal strain $=\alpha \Delta T$
$\Rightarrow$ Longitudinal strain, $\delta=10^{-5} \times 10^2=10^{-3}$
$\Rightarrow$ Compressive stress $=\delta \times$ Young's Modulus
$=10^{-3} \times 0.5 \times 10^{11}$
$=0.5 \times 10^8$
$\Rightarrow \text { Compressive force }=0.5 \times 10^8 \times 10^{-3}=0.5 \times 10^5$
$\quad=5 \times 10^4 \times \frac{10}{10}$
$=50 \times 10^3 \mathrm{~N}$