- Home
- Standard 11
- Physics
$5$ मोल (mole) एकपरमाणुक तथा $1$ मोल दृढ़ द्विपरमाणुक आदर्श गैस के मिश्रण का आरंभ में दाब $P _0$, आयतन $V _0$ और तापमान $T _0$ है। यदि गैस के मिश्रण को रूद्धोष्म (adiabatic) प्रक्रम से इतना संपीडित किया जाता है कि आयतन $V _0 / 4$ हो जाए तब निम्नलिखित कथनों में से कौनसा/कौनसे सही है( हैं) ?
(दिया है, $2^{1.2}=2.3 ; 2^{3.2}=9.2 ; R$ गैस नियतांक है)
$(1)$ संपीडन के पश्चात अंतिम दाब $9 P _0$ और $10 P _0$ के बीच है।
$(2)$ संपीडन के बाद गैस की औसत गतिज ऊर्जा का मान $18 RT _0$ और $19 RT$ के बीच है।
$(3)$ प्रक्रम में किया गया कार्य $| W |=13 RT _0$ है।
$(4)$ गैस के मिश्रण का रूद्धोष्म नियतांक $1.6$ है।
$1,2,3$
$1,2,4$
$1,3,4$
$1,4$
Solution
$n _1=5 \text { moles } C _{ v _1}=\frac{3 R }{2} \quad P _0 V _0 T _0$
$n _2=1 \text { mole } C _{ v _2}=\frac{5 R }{2}$
$\left(C_v\right)_m=\frac{n_1 C_{v_1}+n_2 C_{v_1}}{n_1+n_2}=\frac{5 \times \frac{3 R}{2}+1 \times \frac{5 R}{2}}{6}=\frac{5 R}{3}$
$\gamma _{ m }=\frac{\left( c _{ P }\right)_{ m }}{\left( c _{ v }\right)_{ m }}=\frac{8}{5}$
$\therefore$ Option $4$ is correct
$\left( C _{ P }\right)_{ m }=\frac{5 R }{3}+ R =\frac{8 R }{3}$
$(1)$ $P _0 V _0^\gamma= P \left(\frac{ V _0}{4}\right)^\gamma \Rightarrow P = P _0(4)^{8 / 5}=9.2 P _0$ which is between $9 P _0$ and $10 P _0$
$(2)$
Average $K.E.=5 \times \frac{3}{2} R T+1 \times \frac{5 R T}{2}$
$=10 R T$
To calculate $T$
$\frac{ P _0 V _0}{ T _0}=9.2 P _0 \times \frac{ V _0}{4 \times T }$
$50$
$T=\frac{9.2}{4} T_0$
Now average $KE =10 R \times 9.2 \frac{ T _0}{4}=23 RT _0$
$(3)$ $W =\frac{ P _1 V _1- P _2 V _2}{\gamma-1}$
$=\frac{ P _0 V _0-9.2 P _0 \times \frac{ V _0}{4}}{3 / 5}=-13 RT _0$