- Home
- Standard 11
- Mathematics
A normal to the hyperbola, $4x^2 - 9y^2\, = 36$ meets the co-ordinate axes $x$ and $y$ at $A$ and $B$, respectively . If the parallelogram $OABP$ ( $O$ being the origin) is formed, then the locus of $P$ is
$4x^2 -9y^2\, = 121$
$4x^2 +9y^2\,= 121$
$9x^2 -4y^2\, = 169$
$9x^2 +4y^2\, = 169$
Solution
Given, $4{x^2} – 9{y^2} = 36$
ater differentiating w.r.t.$x$, we get
$4.2x – 9.2y.\frac{{dy}}{{dx}} = 0$
$ \Rightarrow $ slope of tangent $ = \frac{{dy}}{{dx}} = \frac{{4x}}{{9y}}$
so, slope of normal $ = \frac{{ – 9y}}{{4x}}$
Now, equation of normal at point $({x_0},{y_0})$ is given by
${y_0} – {y_0} = \frac{{ – 9y}}{{4x}}\left( {{x_0} – {x_0}} \right)$
As normal intersects $X$ axis at $A$, Then
$A \equiv \left( {\frac{{13{x_0}}}{9},0} \right)$
and $B \equiv \left( {0,\frac{{13{y_0}}}{4}} \right)$
As $OABP$ is a parallelogram
$\therefore $ midpoint of $OB \equiv \left( {0,\frac{{13{y_0}}}{8}} \right) \equiv $ Midpoint of $AP$
So,$P\left( {x,y} \right) \equiv \left( {\frac{{ – 13{x_0}}}{9},\frac{{13{y_0}}}{4}} \right)\,\,\,\,\,\,……\left( i \right)$
$\therefore \,({x_0},{y_0})$ lies on hyperbola, therfore
$4{\left( {{x_0}} \right)^2} – 9{\left( {{y_0}} \right)^2} = 36\,\,\,\,\,\,\,\,…….\left( {ii} \right)$
Feom equation $(i):$ ${x_0} = \frac{{ – 9x}}{{13}}\,$ and ${y_0} = \frac{{4y}}{{13}}$
From equation $(ii)$, we get
$9{x^2} – 4{y^2} = 169$
Hence, locus point $P$ is :$9{x^2} – 4{y^2} = 169$