A normal to the hyperbola, $4x^2 - 9y^2\, = 36$ meets the co-ordinate axes $x$ and $y$ at $A$ and $B$, respectively . If the parallelogram $OABP$ ( $O$ being the origin) is formed, then the locus of $P$ is
$4x^2 -9y^2\, = 121$
$4x^2 +9y^2\,= 121$
$9x^2 -4y^2\, = 169$
$9x^2 +4y^2\, = 169$
The equation of the normal at the point $(a\sec \theta ,\;b\tan \theta )$ of the curve ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ is
A hyperbola passes through the points $(3, 2)$ and $(-17, 12)$ and has its centre at origin and transverse axis is along $x$ - axis. The length of its transverse axis is
Length of latus rectum of hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 4\,is\,\left( {\alpha \ne \frac{{n\pi }}{2},n \in I} \right)$
If $P$ is a point on the hyperbola $16{x^2} - 9{y^2} = 144$ whose foci are ${S_1}$ and ${S_2}$, then $P{S_1}- P{S_2} = $
The equation of the tangents to the hyperbola $4x^2 -y^2 = 12$ are $y = 4x+ c_1 \,$$ \& \, y = 4x + c_2,$ then $|c_1 -c_2|$ is equal to -