10-2. Parabola, Ellipse, Hyperbola
hard

If a directrix of a hyperbola centered at the origin and passing through the point $(4, -2\sqrt 3)$ is $5x = 4\sqrt 5$ and its eccentricity is $e$, then

A

$4e^4 + 8e^2 -35 = 0$

B

$4e^4 -24e^2 + 35 = 0$

C

$4e^4 -12e^2 -27 = 0$

D

$4e^4 -24e^2 + 27 = 0$

(JEE MAIN-2019)

Solution

Let hyperbola be $\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1$ and passes through $\left( {4, – 2\sqrt 3 } \right)$ therefore

$\frac{{16}}{{{a^2}}} – \frac{{12}}{{{b^2}}} = 1\,\,\,\,\,\,\,\,\,\,\,……\left( i \right)$

$\because$ ${b^2} = {a^2}\left( {{e^2} – 1} \right)$

$x = \frac{{4\sqrt 5 }}{5} = \frac{e}{a} \Rightarrow {a^2} = \frac{{16}}{5}{e^2}\,\,\,\,\,\,\,\,\,\,………\left( {ii} \right)$

On solving $(i)$ and $(ii)$

$ \Rightarrow 4{e^2}\, – 24{e^2}\, + 35 = 0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.