Let $m_1$ and $m_2$ be the slopes of the tangents drawn from the point $P (4,1)$ to the hyperbola $H: \frac{y^2}{25}-\frac{x^2}{16}=1$. If $Q$ is the point from which the tangents drawn to $H$ have slopes $\left| m _1\right|$ and $\left| m _2\right|$ and they make positive intercepts $\alpha$ and $\beta$ on the $x$ axis, then $\frac{(P Q)^2}{\alpha \beta}$ is equal to $............$.

  • [JEE MAIN 2023]
  • A

    $6$

  • B

    $5$

  • C

    $8$

  • D

    $4$

Similar Questions

The product of the lengths of perpendiculars drawn from any point on the hyperbola ${x^2} - 2{y^2} - 2 = 0$ to its asymptotes is

The locus of the centroid of the triangle formed by any point $\mathrm{P}$ on the hyperbola $16 \mathrm{x}^{2}-9 \mathrm{y}^{2}+$ $32 x+36 y-164=0$, and its foci is:

  • [JEE MAIN 2021]

The equation of the director circle of the hyperbola $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{4} = 1$ is given by

If $ P(x_1, y_1), Q(x_2, y_2), R(x_3, y_3) $ and $ S(x_4, y_4) $ are $4 $ concyclic points on the rectangular hyperbola $x y = c^2$ , the co-ordinates of the orthocentre of the triangle $ PQR$  are :

The asymptote of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}}= 1$ form with any tangent to the hyperbola a triangle whose area is $a^2$ $\tan$ $ \lambda $ in magnitude then its eccentricity is :