A number is the reciprocal of the other. If the arithmetic mean of the two numbers be $\frac{{13}}{{12}}$, then the numbers are
$\frac{1}{4},\;\frac{4}{1}$
$\frac{3}{4},\;\frac{4}{3}$
$\frac{2}{5},\;\frac{5}{2}$
$\frac{3}{2},\;\frac{2}{3}$
If ${a_1},\;{a_2},\;{a_3}.......{a_n}$ are in $A.P.$, where ${a_i} > 0$ for all $i$, then the value of $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = $
If ${S_n} = nP + \frac{1}{2}n(n - 1)Q$, where ${S_n}$ denotes the sum of the first $n$ terms of an $A.P.$, then the common difference is
If the first term of an $A.P.$ is $3$ and the sum of its first $25$ terms is equal to the sum of its next $15$ terms, then the common difference of this $A.P.$ is :
Suppose the sum of the first $m$ terms of an arithmetic progression is $n$ and the sum of its first $n$ terms is $m$, where $m \neq n$. Then, the sum of the first $(m+n)$ terms of the arithmetic progression is
If $x_1 , x_2 , ..... , x_n$ and $\frac{1}{{{h_1}}},\frac{1}{{{h^2}}},......\frac{1}{{{h_n}}}$ are two $A.P' s$ such that $x_3 = h_2 = 8$ and $x_8 = h_7 = 20$, then $x_5. h_{10}$ equals