How many terms of the $A.P.$ $-6,-\frac{11}{2},-5, \ldots \ldots$ are needed to give the sum $-25 ?$
Let the sum of $n$ terms of the given $A.P.$ be $-25$
It is known that,
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Where $n=$ number of terms, $a=$ first term, and $d=$ common difference
Here, $a=-6$
$d=-\frac{11}{2}+6=\frac{-11+12}{2}=\frac{1}{2}$
Therefore, we obtain
$-25=\frac{n}{2}\left[2 \times(-6)+(n-1)\left(\frac{1}{2}\right)\right]$
$\Rightarrow-50=n\left[-12+\frac{n}{2}-\frac{1}{2}\right]$
$\Rightarrow-50=n\left[-\frac{25}{2}+\frac{n}{2}\right]$
$\Rightarrow-100=n(-25+n)$
$\Rightarrow n^{2}-25 n+100=0$
$\Rightarrow n^{2}-5 n-20 n+100=0$
$\Rightarrow n(n-5)-20(n-5)=0$
$\Rightarrow n=20$ or $5$
The sum of $24$ terms of the following series $\sqrt 2 + \sqrt 8 + \sqrt {18} + \sqrt {32} + .........$ is
The common difference of the $A.P.$ $b_{1}, b_{2}, \ldots,$ $b_{ m }$ is $2$ more than the common difference of $A.P.$ $a _{1}, a _{2}, \ldots, a _{ n } .$ If $a _{40}=-159, a _{100}=-399$ and $b _{100}= a _{70},$ then $b _{1}$ is equal to
Let ${S_1},{S_2},......,{S_{101}}$ be the consecutive terms of an $A.P$ . If $\frac{1}{{{S_1}{S_2}}} + \frac{1}{{{S_2}{S_3}}} + .... + \frac{1}{{{S_{100}}{S_{101}}}} = \frac{1}{6}$ and ${S_1} + {S_{101}} = 50$ , then $\left| {{S_1} - {S_{101}}} \right|$ is equal to
Let ${S_n}$ denotes the sum of $n$ terms of an $A.P.$ If ${S_{2n}} = 3{S_n}$, then ratio $\frac{{{S_{3n}}}}{{{S_n}}} = $
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{2 n-3}{6}$