If the first, second and last terms of an $A.P.$ be $a,\;b,\;2a$ respectively, then its sum will be

  • A

    $\frac{{ab}}{{b - a}}$

  • B

    $\frac{{ab}}{{2(b - a)}}$

  • C

    $\frac{{3ab}}{{2(b - a)}}$

  • D

    $\frac{{3ab}}{{4(b - a)}}$

Similar Questions

If ${a_1},\;{a_2},\,{a_3},......{a_{24}}$ are in arithmetic progression and ${a_1} + {a_5} + {a_{10}} + {a_{15}} + {a_{20}} + {a_{24}} = 225$, then ${a_1} + {a_2} + {a_3} + ........ + {a_{23}} + {a_{24}} = $

If $3^{2 \sin 2 \alpha-1},14$ and $3^{4-2 \sin 2 \alpha}$ are the first three terms of an $A.P.$ for some $\alpha$, then the sixth term of this $A.P.$ is 

  • [JEE MAIN 2020]

If $\tan \left(\frac{\pi}{9}\right), x, \tan \left(\frac{7 \pi}{18}\right)$ are in arithmetic progression and $\tan \left(\frac{\pi}{9}\right), y, \tan \left(\frac{5 \pi}{18}\right)$ are also in arithmetic progression, then $|x-2 y|$ is equal to:

  • [JEE MAIN 2021]

If three numbers be in $G.P.$, then their logarithms will be in

If all interior angle of quadrilateral are in $AP$ . If common difference is $10^o$ , then find smallest angle ?.....$^o$