If the first, second and last terms of an $A.P.$ be $a,\;b,\;2a$ respectively, then its sum will be
$\frac{{ab}}{{b - a}}$
$\frac{{ab}}{{2(b - a)}}$
$\frac{{3ab}}{{2(b - a)}}$
$\frac{{3ab}}{{4(b - a)}}$
If three distinct number $a, b, c$ are in $G.P.$ and the equations $ax^2 + 2bc + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root, then which one of the following statements is correct?
If three numbers be in $G.P.$, then their logarithms will be in
When $9^{th}$ term of $A.P$ is divided by its $2^{nd}$ term then quotient is $5$ and when $13^{th}$ term is divided by $6^{th}$ term then quotient is $2$ and Remainder is $5$ then find first term of $A.P.$