Gujarati
8. Sequences and Series
easy

If the first, second and last terms of an $A.P.$ be $a,\;b,\;2a$ respectively, then its sum will be

A

$\frac{{ab}}{{b - a}}$

B

$\frac{{ab}}{{2(b - a)}}$

C

$\frac{{3ab}}{{2(b - a)}}$

D

$\frac{{3ab}}{{4(b - a)}}$

Solution

(c) We have first term $A = a$ ……$(i)$

Second term $A + d = b$……$(ii)$

and last term $l = 2a$……$(iii)$

From $(i), (ii)$ and $(iii),$ $ d=(b-a) $ and $n = \frac{b}{{b – a}}$

Then sum $S = \frac{n}{2}[a + l] = \frac{b}{{2(b – a)}}[a + 2a] = \frac{{3ab}}{{2(b – a)}}$

Trick : Let $a = 2,\;b = 3$then the sum $ = 9$ which is given by option $(c).$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.