If the first, second and last terms of an $A.P.$ be $a,\;b,\;2a$ respectively, then its sum will be
$\frac{{ab}}{{b - a}}$
$\frac{{ab}}{{2(b - a)}}$
$\frac{{3ab}}{{2(b - a)}}$
$\frac{{3ab}}{{4(b - a)}}$
Suppose we have an arithmetic progression $a_1, a_2, \ldots a_n, \ldots$ with $a_1=1, a_2-a_1=5$. The median of the finite sequence $a_1, a_2, \ldots, a_k$, where $a_k \leq 2021$ and $a_{k+1} > 2021$ is
If $x,y,z$ are in $A.P.$ and ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$ and ${\tan ^{ - 1}}z$ are also in other $A.P.$ then . . .
If the sum of $n$ terms of an $A.P.$ is $\left(p n+q n^{2}\right),$ where $p$ and $q$ are constants, find the common difference.
For $p, q \in R$, consider the real valued function $f ( x )=( x - p )^{2}- q , x \in R$ and $q >0$. Let $a _{1}, a _{2}, a _{3}$ and $a _{4}$ be in an arithmetic progression with mean $P$ and positive common difference. If $\left| f \left( a _{ i }\right)\right|=500$ for all $i=1,2,3,4$, then the absolute difference between the roots of $f ( x )=0$ is.
The $8^{\text {th }}$ common term of the series $S _1=3+7+11+15+19+\ldots . .$ ; $S _2=1+6+11+16+21+\ldots .$ is $.......$.