A parallel plate capacitor has a plate separation of $0.01\, mm$ and use a dielectric (whose dielectric strength is $19\, KV/mm$) as an insulator. The maximum potential difference that can be applied to the terminals of the capacitor is......$V$
$190$
$290$
$95$
$350$
A parallel palate capacitor with square plates is filled with four dielectrics of dielectric constants $K_1, K_2, K_3, K_4$ arranged as shown in the figure. The effective dielectric constant $K$ will be
Initially the circuit is in steady state. Now one of the capacitor is filled with dielectric of dielectric constant $2$ . Find the heat loss in the circuit due to insertion of dielectric
A capacitor has air as dielectric medium and two conducting plates of area $12 \mathrm{~cm}^2$ and they are $0.6 \mathrm{~cm}$ apart. When a slab of dielectric having area $12 \mathrm{~cm}^2$ and $0.6 \mathrm{~cm}$ thickness is inserted between the plates, one of the conducting plates has to be moved by $0.2 \mathrm{~cm}$ to keep the capacitance same as in previous case. The dielectric constant of the slab is : (Given $\left.\epsilon_0=8.834 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)$
Explain the effect of dielectric on capacitance of parallel plate capacitor and obtain the formula of dielectric constant.
Match the pairs
Capacitor | Capacitance |
$(A)$ Cylindrical capacitor | $(i)$ ${4\pi { \in _0}R}$ |
$(B)$ Spherical capacitor | $(ii)$ $\frac{{KA{ \in _0}}}{d}$ |
$(C)$ Parallel plate capacitor having dielectric between its plates | $(iii)$ $\frac{{2\pi{ \in _0}\ell }}{{ln\left( {{r_2}/{r_1}} \right)}}$ |
$(D)$ Isolated spherical conductor | $(iv)$ $\frac{{4\pi { \in _0}{r_1}{r_2}}}{{{r_2} - {r_1}}}$ |