A parallel plate capacitor has a plate separation of $0.01\, mm$ and use a dielectric (whose dielectric strength is $19\, KV/mm$) as an insulator. The maximum potential difference that can be applied to the terminals of the capacitor is......$V$
$190$
$290$
$95$
$350$
The capacity of a parallel plate capacitor with no dielectric substance but with a separation of $0.4 \,cm$ is $2\,\mu \,F$. The separation is reduced to half and it is filled with a dielectric substance of value $2.8$. The final capacity of the capacitor is.......$\mu \,F$
A parallel plate capacitor is formed by two plates each of area $30 \pi\, cm ^{2}$ separated by $1\, mm$. A material of dielectric strength $3.6 \times 10^{7} \,Vm ^{-1}$ is filled between the plates. If the maximum charge that can be stored on the capacitor without causing any dielectric breakdown is $7 \times 10^{-6}\, C$, the value of dielectric constant of the material is
$\left\{ Use : \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} Nm ^{2} C ^{-2}\right\}$
A parallel plate capacitor is made of two square plates of side $a$, separated by a distance $d\,(d < < a)$. The lower triangular portion is filled with a dielectric of dielectric constant $K$, as shown in the figure. Capacitance of this capacitor is
A parallel plate capacitor is charged to a potential difference of $100\,V$ and disconnected from the source of $emf$ . A slab of dielectric is then inserted between the plates. Which of the following three quantities change?
$(i)$ The potential difference
$(ii)$ The capacitance
$(iii)$ The charge on the plates
The electric field between the plates of a parallel plate capacitor when connected to a certain battery is ${E_0}$. If the space between the plates of the capacitor is filled by introducing a material of dielectric constant $K$ without disturbing the battery connections, the field between the plates shall be