In a capacitor of capacitance $20\,\mu \,F$, the distance between the plates is $2\,mm$. If a dielectric slab of width $1\,mm$ and dielectric constant $2$ is inserted between the plates, then the new capacitance is......$\mu \,F$

  • A

    $2$

  • B

    $15.5$

  • C

    $26.6$

  • D

    $32$

Similar Questions

A parallel plate capacitor is charged to a potential difference of $100\,V$ and disconnected from the source of $emf$ . A slab of dielectric is then inserted between the plates. Which of the following three quantities change?

$(i)$  The potential difference

$(ii)$ The capacitance

$(iii)$ The charge on the plates

Voltage rating of a parallel plate capacitor is $500\,V$. Its dielectric can withstand a maximum electric field of ${10^6}\,\frac{V}{m}$. The plate area is $10^{-4}\, m^2$ . What is the dielectric constant if the capacitance is $15\, pF$ ? (given ${ \in _0} = 8.86 \times {10^{ - 12}}\,{C^2}\,/N{m^2}$)

  • [JEE MAIN 2019]

A parallel plate capacitor of area $A$, plate separation $d$ and capacitance $C$ is filled with three different dielectric materials having dielectric constants ${k_1},{k_2}$ and ${k_3}$ as shown. If a single dielectric material is to be used to have the same capacitance $C$ in this capacitor, then its dielectric constant $k$ is given by

  • [IIT 2000]

In a parallel plate capacitor the separation between the plates is $3\,mm$ with air between them. Now a $1\,mm$ thick layer of a material of dielectric constant $2$ is introduced between the plates due to which the capacity increases. In order to bring its capacity to the original value the separation between the plates must be made......$mm$

Explain the difference in the behaviour of a conductor and dielectric in the presence of external electric field.