A parallel plate capacitor of capacitance $200 \,\mu {F}$ is connected to a battery of $200 \, {V} .$ A dielectric slab of dielectric constant $2$ is now inserted into the space between plates of capacitor while the battery remain connected. The change in the electrostatic energy in the capacitor will be ......$ J.$
$400$
$0.4$
$40$
$4$
A parallel plate capacitor of capacitance $12.5 \mathrm{pF}$ is charged by a battery connected between its plates to potential difference of $12.0 \mathrm{~V}$. The battery is now disconnected and a dielectric slab $\left(\epsilon_{\mathrm{r}}=6\right)$ is inserted between the plates. The change in its potential energy after inserting the dielectric slab is_______.$\times 10^{-12} \mathrm{~J}$.
Match the pairs
Capacitor | Capacitance |
$(A)$ Cylindrical capacitor | $(i)$ ${4\pi { \in _0}R}$ |
$(B)$ Spherical capacitor | $(ii)$ $\frac{{KA{ \in _0}}}{d}$ |
$(C)$ Parallel plate capacitor having dielectric between its plates | $(iii)$ $\frac{{2\pi{ \in _0}\ell }}{{ln\left( {{r_2}/{r_1}} \right)}}$ |
$(D)$ Isolated spherical conductor | $(iv)$ $\frac{{4\pi { \in _0}{r_1}{r_2}}}{{{r_2} - {r_1}}}$ |
The energy and capacity of a charged parallel plate capacitor are $U$ and $C$ respectively. Now a dielectric slab of $\in _r = 6$ is inserted in it then energy and capacity becomes (Assume charge on plates remains constant)
A composite parallel plate capacitor is made up of two different dielectric materials with different thickness $\left(t_{1}\right.$ and $\left.t_{2}\right)$ as shown in figure. The two different dielectric material are separated by a conducting foil $F$. The voltage of the conducting foil is $.....V$
A parallel plate capacitor $\mathrm{C}$ with plates of unit area and separation $\mathrm{d}$ is filled with a liquid of dielectric constant $\mathrm{K}=2$. The level of liquid is $\frac{\mathrm{d}}{3}$ initially. Suppose the liquid level decreases at a constant speed $V,$ the time constant as a function of time $t$ is Figure: $Image$