2. Electric Potential and Capacitance
hard

A parallel plate capacitor with plate area $A$ and plate separation $d =2 \,m$ has a capacitance of $4 \,\mu F$. The new capacitance of the system if half of the space between them is filled with a dielectric material of dielectric constant $K =3$ (as shown in figure) will be .........$ \mu \,F$

A

$2$

B

$32$

C

$6$

D

$8$

(JEE MAIN-2022)

Solution

$C _{\text {original }}=\frac{ A \varepsilon_{0}}{ d }$

$C _{1}=\frac{ A \varepsilon_{0}}{ d / 2}=\frac{2 A \varepsilon_{0}}{ d }= C$

$C _{2}=\frac{ KA \varepsilon_{0}}{ d / 2}=\frac{2 KA \varepsilon_{0}}{ d }=\frac{6 A \varepsilon_{0}}{ d }=3 C$

$C_{1}$ and $C_{2}$ are in series

$C _{\text {new }}=\frac{ C _{1} C _{2}}{ C _{1}+ C _{2}}=\frac{ C \times 3 C }{ C +3 C }=\frac{3 C }{4}$

$=\frac{3}{4} \times \frac{2 A \varepsilon_{0}}{d}=\frac{3}{2} \times \frac{A \varepsilon_{0}}{d}$

$C _{\text {new }}=\frac{3}{2} C _{\text {original }}$

$=\frac{3}{2} \times 4=6\, \mu\, F$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.