A parallel plate condenser with oil between the plates (dielectric constant of oil $K = 2$) has a capacitance $C$. If the oil is removed, then capacitance of the capacitor becomes
$\sqrt 2 C$
$2C$
$\frac{C}{{\sqrt 2 }}$
$\frac{C}{2}$
Two dielectric slabs of constant ${K_1}$ and ${K_2}$ have been filled in between the plates of a capacitor as shown below. What will be the capacitance of the capacitor
A parallel plate capacitor of capacitance $12.5 \mathrm{pF}$ is charged by a battery connected between its plates to potential difference of $12.0 \mathrm{~V}$. The battery is now disconnected and a dielectric slab $\left(\epsilon_{\mathrm{r}}=6\right)$ is inserted between the plates. The change in its potential energy after inserting the dielectric slab is_______.$\times 10^{-12} \mathrm{~J}$.
If a slab of insulating material $4 \times {10^{ - 3}}\,m$ thick is introduced between the plates of a parallel plate capacitor, the separation between plates has to be increased by $3.5 \times {10^{ - 3}}\,m$ to restore the capacity to original value. The dielectric constant of the material will be
The area of the plates of a parallel plate condenser is $A$ and the distance between the plates is $10\,mm$. There are two dielectric sheets in it, one of dielectric constant $10$ and thickness $6\,mm$ and the other of dielectric constant $5$ and thickness $4\,mm$. The capacity of the condenser is
A parallel plate capacitor having capacitance $12\, pF$ is charged by a battery to a potential difference of $10\, V$ between its plates. The charging battery is now disconnected and a porcelain slab of dielectric constant $6.5$ is slipped between the plates. The work done by the capacitor on the slab is.......$pJ$