- Home
- Standard 11
- Physics
A particle fall from height $h$ on $a$ static horizontal plane rebounds. If $e$ is coefficient of restitution then before coming to rest the total distance travelled during rebounds will be:-
$h\left( {\frac{{1 + {e^2}}}{{1 - {e^2}}}} \right)$
$h\left( {\frac{{1 - {e^2}}}{{1 + {e^2}}}} \right)$
$\frac{h}{2}\left( {\frac{{1 - {e^2}}}{{1 + {e^2}}}} \right)$
$\frac{h}{2}\left( {\frac{{1 + {e^2}}}{{1 - {e^2}}}} \right)$
Solution

$\mathrm{S}=\mathrm{h}+\mathrm{h}_{1}+\mathrm{h}_{1}+\mathrm{h}_{2}+\mathrm{h}_{2}+\ldots \ldots$
$\mathrm{S}=\mathrm{h}+2 \mathrm{h}_{1}+2 \mathrm{h}_{2}+\ldots \ldots \ldots$
$\mathrm{S}=\mathrm{h}+2 \mathrm{e}^{2} \mathrm{h}+2 \mathrm{e}^{4} \mathrm{h}+$
$S=h+2 e^{2} h\left[1+e^{2}+e^{4}+\ldots \ldots\right]$
$S=h+2 e^{2} h\left(\frac{1}{1-e^{2}}\right)$
$S=h\left(\frac{1+e^{2}}{1-e^{2}}\right)$